Modeling Crude Oil Prices (CPO) using General Regression Neural Network (GRNN)
Modeling time series is often associated with the process forecasts certain characteristics in the next period. One of the methods forecasts that developed nowadays is using artificial neural network or more popularly known as aneural network. Use neural network in forecasts time series can be agood solution, but the problem is network architecture and the training method in the right direction. General Regression Neural Network (GRNN) is one of the network model radial basis that used to approach a function. GRNN including model neural network model with a solution that quickly, because it is not needed each iteration in the estimation weight. This model has a network architecture that wasa number of units in pattern layer in accordance with the number of input data. One of the application GRNN is to predict the crude oil by using a model GRNN.From the training and testing on the data obtained by the RMSE testing 1.9355 and RMSE training 1.1048.Model is good to be used to give aprediction that is quite accurate information that is shown by the close target with the output.
International Journal Of Chemistry, Mathematics And Physics (IJCMP)
Rezzy Eko Caraka